Package: m5 0.1.1
m5: 'M5 Forecasting' Challenges Data
Contains functions, which facilitate downloading, loading and preparing data from 'M5 Forecasting' challenges (by 'University of Nicosia', hosted on 'Kaggle'). The data itself is set of time series of different product sales in 'Walmart'. The package also includes a ready-to-use built-in M5 subset named 'tiny_m5'. For detailed information about the challenges, see: Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilis. (2020). The M5 Accuracy competition: Results, findings and conclusions. <doi:10.1016/j.ijforecast.2021.10.009>
Authors:
m5_0.1.1.tar.gz
m5_0.1.1.zip(r-4.5)m5_0.1.1.zip(r-4.4)m5_0.1.1.zip(r-4.3)
m5_0.1.1.tgz(r-4.4-any)m5_0.1.1.tgz(r-4.3-any)
m5_0.1.1.tar.gz(r-4.5-noble)m5_0.1.1.tar.gz(r-4.4-noble)
m5_0.1.1.tgz(r-4.4-emscripten)m5_0.1.1.tgz(r-4.3-emscripten)
m5.pdf |m5.html✨
m5/json (API)
# Install 'm5' in R: |
install.packages('m5', repos = c('https://krzjoa.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/krzjoa/m5/issues
- tiny_m5 - A subset from M5 Walmart Challenge Dataset in one data frame
data-sciencekaggle-competitionkaggle-datasetm5-competitionm5-forecastingtime-series-forecastingwalmartwalmart-sales-forecasting
Last updated 2 years agofrom:8b03702c48. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win | WARNING | Oct 31 2024 |
R-4.5-linux | WARNING | Oct 31 2024 |
R-4.4-win | WARNING | Oct 31 2024 |
R-4.4-mac | WARNING | Oct 31 2024 |
R-4.3-win | WARNING | Oct 31 2024 |
R-4.3-mac | WARNING | Oct 31 2024 |
Exports:m5_demand_typem5_downloadm5_get_raw_evaluationm5_get_raw_validationm5_prepare
Dependencies:cpp11data.tablegenericslubridatestringitimechange
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Classify time series of the particular items | m5_demand_type |
Download and unzip the raw data to the specified directory | m5_download |
Load raw CSV files using 'data.table::fread()' function | m5_get_raw m5_get_raw_evaluation m5_get_raw_validation |
Prepare the ready-to-use M5 data in one data.frame | m5_prepare |
A subset from M5 Walmart Challenge Dataset in one data frame | tiny_m5 |