Package: matricks 0.8.2

matricks: Useful Tricks for Matrix Manipulation

Provides functions, which make matrix creation conciser (such as the core package's function m() for rowwise matrix definition or runifm() for random value matrices). Allows to set multiple matrix values at once, by using list of formulae. Provides additional matrix operators and dedicated plotting function.

Authors:Krzysztof Joachimiak [aut, cre]

matricks_0.8.2.tar.gz
matricks_0.8.2.zip(r-4.5)matricks_0.8.2.zip(r-4.4)matricks_0.8.2.zip(r-4.3)
matricks_0.8.2.tgz(r-4.5-arm64)matricks_0.8.2.tgz(r-4.5-x86_64)matricks_0.8.2.tgz(r-4.4-x86_64)matricks_0.8.2.tgz(r-4.4-arm64)matricks_0.8.2.tgz(r-4.3-x86_64)matricks_0.8.2.tgz(r-4.3-arm64)
matricks_0.8.2.tar.gz(r-4.5-noble)matricks_0.8.2.tar.gz(r-4.4-noble)
matricks_0.8.2.tgz(r-4.4-emscripten)matricks_0.8.2.tgz(r-4.3-emscripten)
matricks.pdf |matricks.html
matricks/json (API)
NEWS

# Install 'matricks' in R:
install.packages('matricks', repos = c('https://krzjoa.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/krzjoa/matricks/issues

Pkgdown site:https://krzjoa.github.io

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

algebramatrixmatrix-manipulationcpp

4.51 score 4 stars 16 scripts 205 downloads 28 exports 33 dependencies

Last updated 5 years agofrom:fd9987b6a4. Checks:1 OK, 10 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 03 2025
R-4.5-win-x86_64NOTEMar 03 2025
R-4.5-mac-aarch64NOTEMar 03 2025
R-4.5-mac-x86_64NOTEFeb 01 2025
R-4.5-linux-x86_64NOTEMar 03 2025
R-4.4-win-x86_64NOTEMar 03 2025
R-4.4-mac-x86_64NOTEMar 03 2025
R-4.4-mac-aarch64NOTEMar 03 2025
R-4.3-win-x86_64NOTEMar 03 2025
R-4.3-mac-x86_64NOTEMar 03 2025
R-4.3-mac-aarch64NOTEMar 03 2025

Exports:%-%%+%%d%%m%antidiagantidiag<-atat<-col_bindcrepis_idx_possiblemmatrix_idxneighbour_idxneighbour_idx_matrixonesplot_matrixrboolmrow_bindrreprunif_same_dimsrunifmseq_matrixset_valuessvvwith_same_dimszeros

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcppreshape2rlangscalesstringistringrtibbleutf8vctrsviridisLitewithr

Use case: Iterative Policy Evaluation (Reinforcement Learning)

Rendered frompolicy_evaluation.Rmdusingknitr::rmarkdownon Mar 03 2025.

Last update: 2020-02-01
Started: 2020-01-06